

ModernGL

ModernGL is a high performance rendering module for Python.

	Install
	From PyPI (pip)

	Development environment

	Using with Mesa 3D on Windows

	Using ModernGL in CI

	The Guide
	An introduction to OpenGL

	Creating a Context

	ModernGL Types

	Shader Introduction

	Vertex Shader (transforms)

	Rendering

	Program

	VertexArray

	Topics
	The Lifecycle of a ModernGL Object

	Context Creation

	Texture Format

	Buffer Format

	Techniques
	Headless on Ubuntu 18 Server

	Reference
	moderngl

	Context

	Buffer

	VertexArray

	Program

	Sampler

	Texture

	TextureArray

	Texture3D

	TextureCube

	Framebuffer

	Renderbuffer

	Scope

	Query

	ConditionalRender

	ComputeShader

Indices and tables

	Index

	Module Index

	Search Page

Install

	From PyPI (pip)

	Development environment

	Using with Mesa 3D on Windows

	Using ModernGL in CI

From PyPI (pip)

ModernGL is available on PyPI for Windows, OS X and Linux as pre-built
wheels. No complication is needed unless you are setting up a
development environment.

$ pip install moderngl

Verify that the package is working:

$ python -m moderngl
moderngl 5.6.0

vendor: NVIDIA Corporation
renderer: GeForce RTX 2080 SUPER/PCIe/SSE2
version: 3.3.0 NVIDIA 441.87
python: 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) [MSC v.1916 64 bit (AMD64)]
platform: win32
code: 330

Note

If you experience issues it’s probably related to context creation.
More configuration might be needed to run moderngl in some cases.
This is especially true on linux running without X. See the context section.

Development environment

Ideally you want to fork the repository first.

.. or clone for your fork
git clone https://github.com/moderngl/moderngl.git
cd moderngl

Building on various platforms:

	On Windows you need visual c++ build tools installed:
https://visualstudio.microsoft.com/visual-cpp-build-tools/

	On OS X you need X Code installed + command line tools
(xcode-select --install)

	Building on linux should pretty much work out of the box

	To compile moderngl: python setup.py build_ext --inplace

Package and dev dependencies:

	Install requirements.txt, tests/requirements.txt and docs/requirements.txt

	Install the package in editable mode: pip install -e .

Using with Mesa 3D on Windows

If you have an old Graphics Card that raises errors when running moderngl, you can try using
this method, to make Moderngl work.

There are essentially two ways,
* Compling Mesa yourselves see https://docs.mesa3d.org/install.html.
* Using msys2, which provids pre-compiled Mesa binaries.

Using MSYS2

	Download and Install https://www.msys2.org/#installation

	Check whether you have 32-bit or 64-bit python.

32-bit python

If you have 32-bit python, then open C:\msys64\mingw32.exe and type the following

pacman -S mingw-w64-i686-mesa

It will install mesa and it’s dependencies. Then you can add C:\msys64\mingw32\bin to PATH before C:\Windows and moderngl
should be working.

64-bit python

If you have 64-bit python, then open C:\msys64\mingw64.exe and type the following

pacman -S mingw-w64-x86_64-mesa

It will install mesa and it’s dependencies. Then you can add C:\msys64\mingw64\bin to PATH before C:\Windows and moderngl
should be working.

Using ModernGL in CI

Windows CI Configuration

ModernGL can’t be run directly on Windows CI without the use of Mesa [https://mesa3d.org/]. To get ModernGL running
you should first install Mesa from the MSYS2 project [https://www.msys2.org/] and adding it to the PATH.

Steps

	Usually MSYS2 project [https://www.msys2.org/] should be installed by default by your CI provider in C:\msys64. You
can refer the documentation [https://www.msys2.org/docs/ci/] on how to get it installed and make
sure to update it.

	Then login through bash and enter pacman -S --noconfirm mingw-w64-x86_64-mesa.

C:\msys64\usr\bin\bash -lc "pacman -S --noconfirm mingw-w64-x86_64-mesa"

This will install Mesa binary, which moderngl would be using.

	Then add C:\msys64\mingw64\bin to PATH.

$env:PATH = "C:\msys64\mingw64\bin;$env:PATH"

Warning

Make sure to delete C:\msys64\mingw64\bin\python.exe if it exists because the python provided
by them would then be added to Global and some unexpected things may happen.

	Then set an environment variable GLCONTEXT_WIN_LIBGL=C:\msys64\mingw64\bin\opengl32.dll. This will
make glcontext use C:\msys64\mingw64\bin\opengl32.dll for opengl drivers.

	Then you can run moderngl as you want to.

Example Configuration

A example configuration for Github Actions:

name: Hello World
on: [push, pull_request]

jobs:
 build:
 runs-on: windows-latest
 steps:
 - uses: actions/checkout@v2
 - name: Set up Python
 uses: actions/setup-python@v2
 with:
 python-version: 3.9
 - uses: msys2/setup-msys2@v2
 with:
 msystem: MINGW64
 release: false
 install: mingw-w64-x86_64-mesa
 - name: Test using ModernGL
 shell: pwsh
 run: |
 Remove-Item C:\msys64\mingw64\bin\python.exe -Force
 $env:GLCONTEXT_WIN_LIBGL = "C:\msys64\mingw64\bin\opengl32.dll"
 python -m pip install -r requirements.txt
 python -m pytest

Linux

For running ModernGL on Linux CI, you would need to configure xvfb so that it starts a Window in the background.
After that, you should be able to use ModernGL directly.

Steps

	Install xvfb from Package Manager.

sudo apt-get -y install xvfb

	The run the below command, to start Xvfb from background.

sudo /usr/bin/Xvfb :0 -screen 0 1280x1024x24 &

	You can run ModernGL now.

Example Configuration

A example configuration for Github Actions:

name: Hello World
on: [push, pull_request]

jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 - name: Set up Python
 uses: actions/setup-python@v2
 with:
 python-version: 3.9
 - name: Prepare
 run: |
 sudo apt-get -y install xvfb
 sudo /usr/bin/Xvfb :0 -screen 0 1280x1024x24 &
 - name: Test using ModernGL
 run: |
 python -m pip install -r requirements.txt
 python -m pytest

macOS

You won’t need any specialy configuration to run on macOS.

The Guide

	An introduction to OpenGL
	The simplified story

	Beyond OpenGL

	Where do ModernGL fit into all this?

	Creating a Context

	ModernGL Types

	Shader Introduction

	Vertex Shader (transforms)

	Rendering

	Program

	VertexArray

An introduction to OpenGL

The simplified story

OpenGL [https://en.wikipedia.org/wiki/OpenGL] (Open Graphics Library) has a long history reaching
all the way back to 1992 when it was created by Silicon Graphics [https://wikipedia.org/wiki/Silicon_Graphics].
It was partly based in their proprietary IRIS GL [https://wikipedia.org/wiki/IRIS_GL]
(Integrated Raster Imaging System Graphics Library) library.

Today OpenGL is managed by the Khronos Group [https://www.khronos.org], an open
industry consortium of over 150 leading hardware and software
companies creating advanced, royalty-free, acceleration
standards for 3D graphics, Augmented and Virtual Reality,
vision and machine learning

The purpose of OpenGL [https://en.wikipedia.org/wiki/OpenGL] is to provide a standard way to interact
with the graphics processing unit to achieve hardware accelerated rendering
across several platforms. How this is done under the hood is up to the
vendors (AMD, Nvidia, Intel, ARM .. etc) as long as the the specifications are
followed.

OpenGL [https://en.wikipedia.org/wiki/OpenGL] have gone though many versions and it can be confusing when looking
up resources. Today we separate “Old OpenGL” and “Modern OpenGL”.
From 2008 to 2010 version 3.x of OpenGL evolved until version
3.3 and 4.1 was released simultaneously

In 2010 version 3.3, 4.0 and 4.1 was released to modernize the api
(simplified explanation) creating something that would be able
to utilize Direct3D 11-class hardware. OpenGL 3.3 is the first
“Modern OpenGL” version (simplified explanation). Everything
from this version is forward compatible all the way to the latest
4.x version. An optional deprecation mechanism was introduced to
disable outdated features. Running OpenGL in core mode would
remove all old features while running in compatibility mode
would still allow mixing the old and new api.

Note

OpenGL 2.x, 3.0, 3.1 and 3.2 can of course access some
modern OpenGL features directly, but for simplicity we are
are focused on version 3.3 as it created the final
standard we are using today. Older OpenGL was also
a pretty wild world with countless vendor specific
extensions. Modern OpenGL cleaned this up quite a bit.

In OpenGL we often talk about the Fixed Pipeline and the
Programmable Pipeline.

OpenGL code using the Fixed Pipeline (Old OpenGL) would use functions like
glVertex, glColor, glMaterial glMatrixMode,
glLoadIdentity, glBegin, glEnd, glVertexPointer,
glColorPointer, glPushMatrix and glPopMatrix.
The api had strong opinions and limitations on what you
could do hiding what really went on under the hood.

OpenGL code using the Programmable Pipeline (Modern OpenGL) would use
functions like glCreateProgram, UseProgram. glCreateShader,
VertexAttrib*, glBindBuffer*, glUniform*.
This API mainly works with buffers of data and smaller programs
called “shaders” running on the GPU to process this data
using the OpenGL Shading Language (GLSL). This gives
enormous flexibility but requires that we understand the
OpenGL pipeline (actually not that complicated).

Beyond OpenGL

OpenGL has a lot of “baggage” after 25 years and hardware have
drastically changed since its inception. Plans for “OpenGL 5”
was started as the Next Generation OpenGL Initiative (glNext).
This Turned into the Vulkan [https://www.khronos.org/vulkan/] API and was a grounds-up redesign
to unify OpenGL and OpenGL ES into one common API that will not be
backwards compatible with existing OpenGL versions.

This doesn’t mean OpenGL is not worth learning today. In fact
learning 3.3+ shaders and understanding the rendering pipeline
will greatly help you understand Vulkan [https://www.khronos.org/vulkan/]. In some cases you can
pretty much copy paste the shaders over to Vulkan [https://www.khronos.org/vulkan/].

Where do ModernGL fit into all this?

The ModernGL library exposes the Programmable Pipeline
using OpenGL 3.3 core or higher. However, we don’t expose OpenGL
functions directly. Instead we expose features though various
objects like Buffer and Program
in a much more “pythonic” way. It’s in other words a higher level
wrapper making OpenGL much easier to reason with. We try to hide
most of the complicated details to make the user more productive.
There are a lot of pitfalls with OpenGL and we remove most of them.

Learning ModernGL is more about learning shaders and the OpenGL
pipeline.

Creating a Context

Before we can do anything with ModernGL we need a Context.
The Context object makes us able to create OpenGL resources.
ModernGL can only create headless contexts (no window), but it can also detect
and use contexts from a large range of window libraries. The moderngl-window [https://github.com/moderngl/moderngl-window]
library is a good start or reference for rendering to a window.

Most of the example code here assumes a ctx variable exists with a
headless context:

standalone=True makes a headless context
ctx = moderngl.create_context(standalone=True)

Detecting an active context created by a window library is simply:

ctx = moderngl.create_context()

More details about context creation can be found in the Context Creation
section.

ModernGL Types

Before throwing you into doing shaders we’ll go through some of the
most important types/objects in ModernGL.

	Buffer is an OpenGL buffer we can for example write
vertex data into. This data will reside in graphics memory.

	Program is a shader program. We can feed it GLSL
source code as strings to set up our shader program

	VertexArray is a light object responsible for
communication between Buffer and Program
so it can understand how to access the provided buffers
and do the rendering call.
These objects are currently immutable but are cheap to make.

	Texture, TextureArray, Texture3D
and TextureCube represents the different texture types.
Texture is a 2d texture and is most commonly used.

	Framebuffer is an offscreen render target. It supports
different attachments types such as a Texture
and a depth texture/buffer.

All of the objects above can only be created from a Context object:

	Context.buffer()

	Context.program()

	Context.vertex_array()

	Context.texture()

	Context.texture_array()

	Context.texture_3d()

	Context.texture_cube()

	Context.framebuffer()

The ModernGL types cannot be extended as in; you cannot subclass them.
Extending them must be done through substitution and not inheritance.
This is related to performance. Most objects have an extra
property that can contain any python object.

Shader Introduction

Shaders are small programs running on the GPU [https://wikipedia.org/wiki/Graphics_processing_unit] (Graphics Processing Unit).
We are using a fairly simple language called GLSL [https://www.khronos.org/opengl/wiki/OpenGL_Shading_Language] (OpenGL Shading Language).
This is a C-style language, so it covers most of the features you would expect
with such a language. Control structures (for-loops, if-else statements, etc)
exist in GLSL, including the switch statement.

Note

The name “shader” comes from the fact that these small GPU programs was
originally created for shading (lighting) 3D scenes. This started
as per-vertex lighting when the early shaders could only process
vertices and evolved into per-pixel lighting when the fragment
shader was introduced.
They are used in many other areas today, but the name have stuck around.

Examples of types are:

bool value = true;
int value = 1;
uint value = 1;
float value = 0.0;
double value = 0.0;

Each type above also has a 2, 3 and 4 component version:

// float (default) type
vec2 value = vec2(0.0, 1.0);
vec3 value = vec3(0.0, 1.0, 2.0);
vec4 value = vec4(0.0);

// signed and unsigned integer vectors
ivec3 value = ivec3(0);
uvec3 value = ivec3(0);
// etc ..

More about GLSL data types [https://www.khronos.org/opengl/wiki/Data_Type_(GLSL)] can be found in the Khronos wiki.

The available functions are for example: radians, degrees
sin, `cos, tan, asin, acos, atan, pow
exp, log, exp2, log2, sqrt, inversesqrt,
abs, sign, floor, ceil, fract, mod,
min, max, clamp, mix, step, smoothstep,
length, distance, dot, cross, normalize,
faceforward, reflect, refract, any, all etc.

All functions can be found in the OpenGL Reference Page [https://www.khronos.org/registry/OpenGL-Refpages/gl4/]
(exclude functions starting with gl).
Most of the functions exist in several overloaded versions
supporting different data types.

The basic setup for a shader is the following:

#version 330

void main() {
}

The #version statement is mandatory and should at least be 330
(GLSL version 3.3 matching OpenGL version 3.3). The version statement
should always be the first line in the source code.
Higher version number is only needed if more fancy features are needed.
By the time you need those you probably know what you are doing.

What we also need to realize when working with shaders is that
they are executed in parallel across all the cores on your GPU.
This can be everything from tens, hundreds, thousands or more
cores. Even integrated GPUs today are very competent.

For those
who have not worked with shaders before it can be mind-boggling
to see the work they can get done in a matter of microseconds.
All shader executions / rendering calls are also asynchronous
running in the background while your python code is doing
other things (but certain operations can cause a “sync” stalling
until the shader program is done)

Vertex Shader (transforms)

Let’s get our hands dirty right away and jump into it by showing the
simplest forms of shaders in OpenGL. These are called transforms or
transform feedback. Instead of drawing to the screen we simply
capture the output of a shader into a Buffer.

The example below shows shader program with only a vertex shader.
It has no input data, but we can still force it to run N times.
The gl_VertexID (int) variable is a built-in value in vertex
shaders containing an integer representing the vertex number
being processed.

Input variables in vertex shaders are called attributes
(we have no inputs in this example)
while output values are called varyings.

import struct
import moderngl

ctx = moderngl.create_context(standalone=True)

program = ctx.program(
 vertex_shader="""
 #version 330

 // Output values for the shader. They end up in the buffer.
 out float value;
 out float product;

 void main() {
 // Implicit type conversion from int to float will happen here
 value = gl_VertexID;
 product = gl_VertexID * gl_VertexID;
 }
 """,
 # What out varyings to capture in our buffer!
 varyings=["value", "product"],
)

NUM_VERTICES = 10

We always need a vertex array in order to execute a shader program.
Our shader doesn't have any buffer inputs, so we give it an empty array.
vao = ctx.vertex_array(program, [])

Create a buffer allocating room for 20 32 bit floats
buffer = ctx.buffer(reserve=NUM_VERTICES * 8)

Start a transform with buffer as the destination.
We force the vertex shader to run 10 times
vao.transform(buffer, vertices=NUM_VERTICES)

Unpack the 20 float values from the buffer (copy from graphics memory to system memory).
Reading from the buffer will cause a sync (the python program stalls until the shader is done)
data = struct.unpack("20f", buffer.read())
for i in range(0, 20, 2):
 print("value = {}, product = {}".format(*data[i:i+2]))

Output the program is:

value = 0.0, product = 0.0
value = 1.0, product = 1.0
value = 2.0, product = 4.0
value = 3.0, product = 9.0
value = 4.0, product = 16.0
value = 5.0, product = 25.0
value = 6.0, product = 36.0
value = 7.0, product = 49.0
value = 8.0, product = 64.0
value = 9.0, product = 81.0

The GPU is at the very least slightly offended by the meager amount
work we assigned it, but this at least shows the basic concept of transforms.
We would in most situations also not read the results back into
system memory because it’s slow, but sometimes it is needed.

This shader program could for example be modified to generate some
geometry or data for any other purpose you might imagine useful.
Using modulus (mod) on gl_VertexID can get you pretty far.

Rendering

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	import moderngl
import numpy as np

from PIL import Image

ctx = moderngl.create_standalone_context()

prog = ctx.program(
 vertex_shader='''
 #version 330

 in vec2 in_vert;
 in vec3 in_color;

 out vec3 v_color;

 void main() {
 v_color = in_color;
 gl_Position = vec4(in_vert, 0.0, 1.0);
 }
 ''',
 fragment_shader='''
 #version 330

 in vec3 v_color;

 out vec3 f_color;

 void main() {
 f_color = v_color;
 }
 ''',
)

x = np.linspace(-1.0, 1.0, 50)
y = np.random.rand(50) - 0.5
r = np.ones(50)
g = np.zeros(50)
b = np.zeros(50)

vertices = np.dstack([x, y, r, g, b])

vbo = ctx.buffer(vertices.astype('f4').tobytes())
vao = ctx.simple_vertex_array(prog, vbo, 'in_vert', 'in_color')

fbo = ctx.simple_framebuffer((512, 512))
fbo.use()
fbo.clear(0.0, 0.0, 0.0, 1.0)
vao.render(moderngl.LINE_STRIP)

Image.frombytes('RGB', fbo.size, fbo.read(), 'raw', 'RGB', 0, -1).show()

Program

ModernGL is different from standard plotting libraries.
You can define your own shader program to render stuff.
This could complicate things, but also provides freedom on how you render
your data.

Here is a sample program that passes the input vertex coordinates as is to
screen coordinates.

Screen coordinates are in the [-1, 1], [-1, 1] range for x and y axes.
The (-1, -1) point is the lower left corner of the screen.

[image: Screen Coordinates]
The screen coordinates

The program will also process a color information.

Entire source

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	import moderngl

ctx = moderngl.create_standalone_context()

prog = ctx.program(
 vertex_shader='''
 #version 330

 in vec2 in_vert;
 in vec3 in_color;

 out vec3 v_color;

 void main() {
 v_color = in_color;
 gl_Position = vec4(in_vert, 0.0, 1.0);
 }
 ''',
 fragment_shader='''
 #version 330

 in vec3 v_color;

 out vec3 f_color;

 void main() {
 f_color = v_color;
 }
 ''',
)

Vertex Shader

in vec2 in_vert;
in vec3 in_color;

out vec3 v_color;

void main() {
 v_color = in_color;
 gl_Position = vec4(in_vert, 0.0, 1.0);
}

Fragment Shader

in vec3 v_color;

out vec3 f_color;

void main() {
 f_color = v_color;
}

Proceed to the next step.

VertexArray

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	import moderngl
import numpy as np

ctx = moderngl.create_standalone_context()

prog = ctx.program(
 vertex_shader='''
 #version 330

 in vec2 in_vert;
 in vec3 in_color;

 out vec3 v_color;

 void main() {
 v_color = in_color;
 gl_Position = vec4(in_vert, 0.0, 1.0);
 }
 ''',
 fragment_shader='''
 #version 330

 in vec3 v_color;

 out vec3 f_color;

 void main() {
 f_color = v_color;
 }
 ''',
)

x = np.linspace(-1.0, 1.0, 50)
y = np.random.rand(50) - 0.5
r = np.ones(50)
g = np.zeros(50)
b = np.zeros(50)

vertices = np.dstack([x, y, r, g, b])

vbo = ctx.buffer(vertices.astype('f4').tobytes())
vao = ctx.simple_vertex_array(prog, vbo, 'in_vert', 'in_color')

Proceed to the next step.

Topics

	The Lifecycle of a ModernGL Object
	Releasing Objects

	Detecting Released Objects

	Context Creation
	Introduction

	Require a minimum OpenGL version

	Specifying context backend

	Context Sharing

	Context Info

	Texture Format
	Description

	Float Textures

	Integer Textures

	Normalized Integer Textures

	Overriding internalformat

	Buffer Format
	Description

	Syntax

	Examples

The Lifecycle of a ModernGL Object

Note

Future version of ModernGL might support different GC models.
It’s an area currently being explored.

Releasing Objects

Objects in moderngl don’t automatically release the OpenGL resources it allocated.
Each type has a release() method that needs to be called to properly clean
up everything:

Create a texture
texture = ctx.texture((10, 10), 4)

Properly release the opengl resources
texture.release()

Ensure we don't keep the object around
texture = None

This comes as a surprise for most people, but there are a number of reasons moderngl
have chosen this approach. Unless you are doing headless rendering we don’t even
“own” the context itself. It’s the window library creating the context for us and
we simply detect it. We don’t really know exactly when this context is destroyed.
There are also other more complicated situations such as contexts with shared
resources.

You can create your own __del__ methods in wrappers if needed, but keep in mind
that moderngl types cannot be extended. They only have an extra attribute
that can contain anything.

Detecting Released Objects

If you for some reason need to detect if a resource was released it can be done
by checking the type of the internal moderngl object (.mglo property):

>> import moderngl
>> ctx = moderngl.create_standalone_context()
>> buffer = ctx.buffer(reserve=1024)
>> type(buffer.mglo)
<class 'mgl.Buffer'>
>> buffer.release()
>> type(buffer.mglo)
<class 'mgl.InvalidObject'>
>> type(buffer.mglo) == moderngl.mgl.InvalidObject
True

Context Creation

Note

From moderngl 5.6 context creation is handled by the glcontext [https://github.com/moderngl/glcontext] package.
This makes expanding context support easier for users lowering the
bar for contributions. It also means context creation is no longer
limited by a moderngl releases.

Note

This page might not list all supported backends as the glcontext [https://github.com/moderngl/glcontext]
project keeps evolving. If using anything outside of the default
contexts provided per OS, please check the listed backends in
the glcontext [https://github.com/moderngl/glcontext] project.

Introduction

A context is an object giving moderngl access to opengl instructions
(greatly simplified). How a context is created depends on your
operating system and what kind of platform you want to target.

In the vast majority of cases you’ll be using the default context
backend supported by your operating system. This backend will be
automatically selected unless a specific backend parameter is used.

Default backend per OS

	Windows: wgl / opengl32.dll

	Linux: x11/glx/libGL

	OS X: CGL

These default backends support two modes:

	Detecting an exiting active context possibly created by a window
library such as glfw, sdl2, pyglet etc.

	Creating a headless context (No visible window)

Detecting an existing active context created by a window library:

import moderngl
Create the window with an OpenGL context (Most window libraries support this)
ctx = moderngl.create_context()
If successful we can now render to the window
print("Default framebuffer is:", ctx.screen)

A great reference using various window libraries can be found here:
https://github.com/moderngl/moderngl-window/tree/master/moderngl_window/context

Creating a headless context:

import moderngl
Create the context
ctx = moderngl.create_context(standalone=True)
Create a framebuffer we can render to
fbo = ctx.simple_framebuffer((100, 100), 4)
fbo.use()

Require a minimum OpenGL version

ModernGL only support 3.3+ contexts. By default version 3.3
is passed in as the minimum required version of the context
returned by the backend.

To require a specific version:

moderngl.create_context(require=430)

This will require OpenGL 4.3. If a lower context version is
returned the context creation will fail.

This attribute can be accessed in Context.version_code
and will be updated to contain the actual version code of the
context (If higher than required).

Specifying context backend

A backend can be passed in for more advanced usage.

For example: Making a headless EGL context on linux:

ctx = moderngl.create_context(standalone=True, backend='egl')

Note

Each backend supports additional keyword arguments for
more advanced configuration. This can for example be
the exact name of the library to load. More information
in the glcontext [https://github.com/moderngl/glcontext] docs.

Context Sharing

Warning

Object sharing is an experimental feature

Some context support the share parameters enabling
object sharing between contexts. This is not needed
if you are attaching to existing context with share mode enabled.
For example if you create two windows with glfw enabling object sharing.

ModernGL objects (such as moderngl.Buffer, moderngl.Texture, ..)
has a ctx property containing the context they were created in.
Still ModernGL do not check what context is currently active when
accessing these objects. This means the object can be used
in both contexts when sharing is enabled.

This should in theory work fine with object sharing enabled:

data1 = numpy.array([1, 2, 3, 4], dtype='u1')
data2 = numpy.array([4, 3, 2, 1], dtype='u1')

ctx1 = moderngl.create_context(standalone=True)
ctx2 = moderngl.create_context(standalone=True, share=True)

with ctx1 as ctx:
 b1 = ctx.buffer(data1)

with ctx2 as ctx:
 b2 = ctx.buffer(data2)

print(b1.glo) # Displays: 1
print(b2.glo) # Displays: 2

with ctx1:
 print(b1.read())
 print(b2.read())

with ctx2:
 print(b1.read())
 print(b2.read())

Still, there are some limitations to object sharing. Especially
objects that reference other objects (framebuffer, vertex array object, etc.)

More information for a deeper dive:

	https://www.khronos.org/opengl/wiki/OpenGL_Object#Object_Sharing

	https://www.khronos.org/opengl/wiki/Memory_Model

Context Info

Various information such as limits and driver information can be found in the
info property. It can often be useful to know
the vendor and render for the context:

>>> import moderngl
>>> ctx = moderngl.create_context(standalone=True, gl_version=(4.6))
>>> ctx.info["GL_VENDOR"]
'NVIDIA Corporation'
>>> ctx.info["GL_RENDERER"]
'GeForce RTX 2080 SUPER/PCIe/SSE2'
>>> ctx.info["GL_VERSION"]
'3.3.0 NVIDIA 456.71'

Note that it reports version 3.3 here because ModernGL by default
requests a version 3.3 context (minimum requirement).

Texture Format

Description

The format of a texture can be described by the dtype parameter
during texture creation. For example the moderngl.Context.texture().
The default dtype is f1. Each component is an unsigned byte (0-255)
that is normalized when read in a shader into a value from 0.0 to 1.0.

The formats are based on the string formats used in numpy.

Some quick example of texture creation:

RGBA (4 component) f1 texture
texture = ctx.texture((100, 100), 4) # dtype f1 is default

R (1 component) f4 texture (32 bit float)
texture = ctx.texture((100, 100), 1, dype="f4")

RG (2 component) u2 texture (16 bit unsigned integer)
texture = ctx.texture((100, 100), 2, dtype="u2")

Texture contents can be passed in using the data parameter during
creation or by using the write() method. The object passed in
data can be bytes or any object supporting the buffer protocol.

When writing data to texture the data type can be derived from
the internal format in the tables below. f1 textures takes
unsigned bytes (u1 or numpy.uint8 in numpy) while
f2 textures takes 16 bit floats (f2 or numpy.float16 in numpy).

Float Textures

f1 textures are just unsigned bytes (8 bits per component) (GL_UNSIGNED_BYTE)

The f1 texture is the most commonly used textures in OpenGL
and is currently the default. Each component takes 1 byte (4 bytes for RGBA).
This is not really a “real” float format, but a shader will read
normalized values from these textures. 0-255 (byte rage) is read
as a value from 0.0 to 1.0 in shaders.

In shaders the sampler type should be sampler2D, sampler2DArray
sampler3D, samplerCube etc.

	dtype

	Components

	Base Format

	Internal Format

	f1

	1

	GL_RED

	GL_R8

	f1

	2

	GL_RG

	GL_RG8

	f1

	3

	GL_RGB

	GL_RGB8

	f1

	4

	GL_RGBA

	GL_RGBA8

f2 textures stores 16 bit float values (GL_HALF_FLOAT).

	dtype

	Components

	Base Format

	Internal Format

	f2

	1

	GL_RED

	GL_R16F

	f2

	2

	GL_RG

	GL_RG16F

	f2

	3

	GL_RGB

	GL_RGB16F

	f2

	4

	GL_RGBA

	GL_RGBA16F

f4 textures store 32 bit float values. (GL_FLOAT)
Note that some drivers do not like 3 components because of alignment.

	dtype

	Components

	Base Format

	Internal Format

	f4

	1

	GL_RED

	GL_R32F

	f4

	2

	GL_RG

	GL_RG32F

	f4

	3

	GL_RGB

	GL_RGB32F

	f4

	4

	GL_RGBA

	GL_RGBA32F

Integer Textures

Integer textures come in a signed and unsigned version. The advantage
with integer textures is that shader can read the raw integer values
from them using for example usampler* (unsigned) or isampler*
(signed).

Integer textures do not support LINEAR filtering (only NEAREST).

Unsigned

u1 textures store unsigned byte values (GL_UNSIGNED_BYTE).

In shaders the sampler type should be usampler2D, usampler2DArray
usampler3D, usamplerCube etc.

	dtype

	Components

	Base Format

	Internal Format

	u1

	1

	GL_RED_INTEGER

	GL_R8UI

	u1

	2

	GL_RG_INTEGER

	GL_RG8UI

	u1

	3

	GL_RGB_INTEGER

	GL_RGB8UI

	u1

	4

	GL_RGBA_INTEGER

	GL_RGBA8UI

u2 textures store 16 bit unsigned integers (GL_UNSIGNED_SHORT).

	dtype

	Components

	Base Format

	Internal Format

	u2

	1

	GL_RED_INTEGER

	GL_R16UI

	u2

	2

	GL_RG_INTEGER

	GL_RG16UI

	u2

	3

	GL_RGB_INTEGER

	GL_RGB16UI

	u2

	4

	GL_RGBA_INTEGER

	GL_RGBA16UI

u4 textures store 32 bit unsigned integers (GL_UNSIGNED_INT)

	dtype

	Components

	Base Format

	Internal Format

	u4

	1

	GL_RED_INTEGER

	GL_R32UI

	u4

	2

	GL_RG_INTEGER

	GL_RG32UI

	u4

	3

	GL_RGB_INTEGER

	GL_RGB32UI

	u4

	4

	GL_RGBA_INTEGER

	GL_RGBA32UI

Signed

i1 textures store signed byte values (GL_BYTE).

In shaders the sampler type should be isampler2D, isampler2DArray
isampler3D, isamplerCube etc.

	dtype

	Components

	Base Format

	Internal Format

	i1

	1

	GL_RED_INTEGER

	GL_R8I

	i1

	2

	GL_RG_INTEGER

	GL_RG8I

	i1

	3

	GL_RGB_INTEGER

	GL_RGB8I

	i1

	4

	GL_RGBA_INTEGER

	GL_RGBA8I

i2 textures store 16 bit integers (GL_SHORT).

	dtype

	Components

	Base Format

	Internal Format

	i2

	1

	GL_RED_INTEGER

	GL_R16I

	i2

	2

	GL_RG_INTEGER

	GL_RG16I

	i2

	3

	GL_RGB_INTEGER

	GL_RGB16I

	i2

	4

	GL_RGBA_INTEGER

	GL_RGBA16I

i4 textures store 32 bit integers (GL_INT)

	dtype

	Components

	Base Format

	Internal Format

	i4

	1

	GL_RED_INTEGER

	GL_R32I

	i4

	2

	GL_RG_INTEGER

	GL_RG32I

	i4

	3

	GL_RGB_INTEGER

	GL_RGB32I

	i4

	4

	GL_RGBA_INTEGER

	GL_RGBA32I

Normalized Integer Textures

Normalized integers are integer texture, but texel reads in a shader
returns normalized values ([0.0, 1.0]). For example an unsigned 16
bit fragment with the value 2**16-1 will be read as 1.0.

Normalized integer textures should use the sampler2D sampler
type. Also note that there’s no standard for normalized 32 bit
integer textures because a float32 doesn’t have enough precision
to express a 32 bit integer as a number between 0.0 and 1.0.

Unsigned

nu1 textures is really the same as an f1. Each component
is a GL_UNSIGNED_BYTE, but are read by the shader in normalized
form [0.0, 1.0].

	dtype

	Components

	Base Format

	Internal Format

	nu1

	1

	GL_RED

	GL_R8

	nu1

	2

	GL_RG

	GL_RG8

	nu1

	3

	GL_RGB

	GL_RGB8

	nu1

	4

	GL_RGBA

	GL_RGBA8

nu2 textures store 16 bit unsigned integers (GL_UNSIGNED_SHORT).
The value range [0, 2**16-1] will be normalized into [0.0, 1.0].

	dtype

	Components

	Base Format

	Internal Format

	nu2

	1

	GL_RED

	GL_R16

	nu2

	2

	GL_RG

	GL_RG16

	nu2

	3

	GL_RGB

	GL_RGB16

	nu2

	4

	GL_RGBA

	GL_RGBA16

Signed

ni1 textures store 8 bit signed integers (GL_BYTE).
The value range [0, 127] will be normalized into [0.0, 1.0].
Negative values will be clamped.

	dtype

	Components

	Base Format

	Internal Format

	ni1

	1

	GL_RED

	GL_R8

	ni1

	2

	GL_RG

	GL_RG8

	ni1

	3

	GL_RGB

	GL_RGB8

	ni1

	4

	GL_RGBA

	GL_RGBA8

ni2 textures store 16 bit signed integers (GL_SHORT).
The value range [0, 2**15-1] will be normalized into [0.0, 1.0].
Negative values will be clamped.

	dtype

	Components

	Base Format

	Internal Format

	ni2

	1

	GL_RED

	GL_R16

	ni2

	2

	GL_RG

	GL_RG16

	ni2

	3

	GL_RGB

	GL_RGB16

	ni2

	4

	GL_RGBA

	GL_RGBA16

Overriding internalformat

Context.texture() supports overriding the internalformat
of the texture. This is only necessary when needing a different
internal formats from the tables above. This can for
example be GL_SRGB8 = 0x8C41 or some compressed format.
You may also need to look up in Context.extensions
to ensure the context supports internalformat you are using.
We do not provide the enum values for these alternative internalformats.
They can be looked up in the registry : https://raw.githubusercontent.com/KhronosGroup/OpenGL-Registry/master/xml/gl.xml

Example:

texture = ctx.texture(image.size, 3, data=srbg_data, internal_format=GL_SRGB8)

Buffer Format

Description

A buffer format is a short string describing the layout of data in a vertex
buffer object (VBO).

A VBO often contains a homogeneous array of C-like structures. The buffer
format describes what each element of the array looks like. For example,
a buffer containing an array of high-precision 2D vertex positions might have
the format "2f8" - each element of the array consists of two floats, each
float being 8 bytes wide, ie. a double.

Buffer formats are used in the Context.vertex_array() constructor,
as the 2nd component of the content arg.
See the Example of simple usage below.

Syntax

A buffer format looks like:

[count]type[size] [[count]type[size]...] [/usage]

Where:

	count is an optional integer. If omitted, it defaults to 1.

	type is a single character indicating the data type:

	f float

	i int

	u unsigned int

	x padding

	size is an optional number of bytes used to store the type.
If omitted, it defaults to 4 for numeric types, or to 1 for padding bytes.

A format may contain multiple, space-separated [count]type[size] triples
(See the Example of single interleaved array), followed by:

	/usage is optional. It should be preceded by a space, and then consists
of a slash followed by a single character, indicating how successive values
in the buffer should be passed to the shader:

	/v per vertex.
Successive values from the buffer are passed to each vertex.
This is the default behavior if usage is omitted.

	/i per instance.
Successive values from the buffer are passed to each instance.

	/r per render.
the first buffer value is passed to every vertex of every instance.
ie. behaves like a uniform.

When passing multiple VBOs to a VAO, the first one must be of usage /v,
as shown in the Example of multiple arrays with differing /usage.

Valid combinations of type and size are:

	
	size

	type

	1

	2

	4

	8

	f

	Unsigned byte
(normalized)

	Half float

	Float

	Double

	i

	Byte

	Short

	Int

	-

	u

	Unsigned byte

	Unsigned short

	Unsigned int

	-

	x

	1 byte

	2 bytes

	4 bytes

	8 bytes

The entry f1 has two unusual properties:

	Its type is f (for float), but it defines a buffer containing unsigned
bytes. For this size of floats only, the values are normalized, ie.
unsigned bytes from 0 to 255 in the buffer are converted to float values
from 0.0 to 1.0 by the time they reach the vertex shader. This is intended
for passing in colors as unsigned bytes.

	Three unsigned bytes, with a format of 3f1,
may be assigned to a vec3 attribute, as one would expect.
But, from ModernGL v6.0,
they can alternatively be passed to a vec4 attribute.
This is intended for passing a buffer of 3-byte RGB values
into an attribute which also contains an alpha channel.

There are no size 8 variants for types i and u.

This buffer format syntax is specific to ModernGL. As seen in the usage
examples below, the formats sometimes look similar to the format strings passed
to struct.pack, but that is a different syntax (documented here [https://docs.python.org/3.7/library/struct.html].)

Buffer formats can represent a wide range of vertex attribute formats.
For rare cases of specialized attribute formats that are not expressible
using buffer formats, there is a VertexArray.bind() method, to
manually configure the underlying OpenGL binding calls. This is not generally
recommended.

Examples

Example buffer formats

"2f" has a count of 2 and a type of f (float). Hence it describes
two floats, passed to a vertex shader’s vec2 attribute. The size of the
floats is unspecified, so defaults to 4 bytes. The usage of the buffer is
unspecified, so defaults to /v (vertex), meaning each successive pair of
floats in the array are passed to successive vertices during the render call.

"3i2/i" means three i (integers). The size of each integer is 2
bytes, ie. they are shorts, passed to an ivec3 attribute.
The trailing /i means that consecutive values
in the buffer are passed to successive instances during an instanced render
call. So the same value is passed to every vertex within a particular instance.

Buffers contining interleaved values are represented by multiple space
separated count-type-size triples. Hence:

"2f 3u x /v" means:

	2f: two floats, passed to a vec2 attribute, followed by

	3u: three unsigned bytes, passed to a uvec3, then

	x: a single byte of padding, for alignment.

The /v indicates successive elements in the buffer are passed to successive
vertices during the render. This is the default, so the /v could be
omitted.

Example of simple usage

Consider a VBO containing 2D vertex positions, forming a single triangle:

a 2D triangle (ie. three (x, y) vertices)
verts = [
 0.0, 0.9,
 -0.5, 0.0,
 0.5, 0.0,
]

pack all six values into a binary array of C-like floats
verts_buffer = struct.pack("6f", *verts)

put the array into a VBO
vbo = ctx.buffer(verts_buffer)

use the VBO in a VAO
vao = ctx.vertex_array(
 shader_program,
 [
 (vbo, "2f", "in_vert"), # <---- the "2f" is the buffer format
]
 index_buffer_object
)

The line (vbo, "2f", "in_vert"), known as the VAO content, indicates that
vbo contains an array of values, each of which consists of two floats.
These values are passed to an in_vert attribute,
declared in the vertex shader as:

in vec2 in_vert;

The "2f" format omits a size component, so the floats default to
4-bytes each. The format also omits the trailing /usage component, which
defaults to /v, so successive (x, y) rows from the buffer are passed to
successive vertices during the render call.

Example of single interleaved array

A buffer array might contain elements consisting of multiple interleaved
values.

For example, consider a buffer array, each element of which contains a 2D
vertex position as floats, an RGB color as unsigned ints, and a single byte of
padding for alignment:

	position

	color

	padding

	x

	y

	r

	g

	b

	-

	float

	float

	unsigned
byte

	unsigned
byte

	unsigned
byte

	byte

Such a buffer, however you choose to contruct it, would then be passed into
a VAO using:

vao = ctx.vertex_array(
 shader_program,
 [
 (vbo, "2f 3f1 x", "in_vert", "in_color")
]
 index_buffer_object
)

The format starts with 2f, for the two position floats, which will
be passed to the shader’s in_vert attribute, declared as:

in vec2 in_vert;

Next, after a space, is 3f1, for the three color unsigned bytes, which
get normalized to floats by f1. These floats will be passed to the shader’s
in_color attribute:

in vec3 in_color;

Finally, the format ends with x, a single byte of padding, which needs
no shader attribute name.

Example of multiple arrays with differing /usage

To illustrate the trailing /usage portion, consider rendering a dozen cubes
with instanced rendering. We will use:

	vbo_verts_normals contains vertices (3 floats) and normals (3 floats)
for the vertices within a single cube.

	vbo_offset_orientation contains offsets (3 floats) and orientations (9
float matrices) that are used to position and orient each cube.

	vbo_colors contains colors (3 floats). In this example, there is only
one color in the buffer, that will be used for every vertex of every cube.

Our shader will take all the above values as attributes.

We bind the above VBOs in a single VAO, to prepare for an instanced rendering
call:

vao = ctx.vertex_array(
 shader_program,
 [
 (vbo_verts_normals, "3f 3f /v", "in_vert", "in_norm"),
 (vbo_offset_orientation, "3f 9f /i", "in_offset", "in_orientation"),
 (vbo_colors, "3f /r", "in_color"),
]
 index_buffer_object
)

So, the vertices and normals, using /v, are passed to each vertex within
an instance. This fulfills the rule tha the first VBO in a VAO must have usage
/v. These are passed to vertex attributes as:

in vec3 in_vert;
in vec3 in_norm;

The offsets and orientations pass the same value to each vertex within an
instance, but then pass the next value in the buffer to the vertices of the
next instance. Passed as:

in vec3 in_offset;
in mat3 in_orientation;

The single color is passed to every vertex of every instance.
If we had stored the color with /v or /i, then we would have had to
store duplicate identical color values in vbo_colors - one per instance or
one per vertex. To render all our cubes in a single color, this is needless
duplication. Using /r, only one color is require the buffer, and it is
passed to every vertex of every instance for the whole render call:

in vec3 in_color;

An alternative approach would be to pass in the color as a uniform, since
it is constant. But doing it as an attribute is more flexible. It allows us to
reuse the same shader program, bound to a different buffer, to pass in color
data which varies per instance, or per vertex.

Techniques

	Headless on Ubuntu 18 Server
	Dependencies

	Creating a context

	Running an example

Headless on Ubuntu 18 Server

Dependencies

Headless rendering can be achieved with EGL or X11.
We’ll cover both cases.

Starting with fresh ubuntu 18 server install we need to install required
packages:

sudo apt-install python3-pip mesa-utils libegl1-mesa xvfb

This should install mesa an diagnostic tools if needed later.

	mesa-utils installs libgl1-mesa and tools like glxinfo`

	libegl1-mesa is optional if using EGL instead of X11

Creating a context

The libraries we are going to interact with has the following locations:

/usr/lib/x86_64-linux-gnu/libGL.so.1
/usr/lib/x86_64-linux-gnu/libX11.so.6
/usr/lib/x86_64-linux-gnu/libEGL.so.1

Double check that you have these libraries installed. ModernGL
through the glcontext library will use ctype.find_library
to locate the latest installed version.

Before we can create a context we to run a virtual display:

export DISPLAY=:99.0
Xvfb :99 -screen 0 640x480x24 &

Now we can create a context with x11 or egl:

X11
import moderngl
ctx = moderngl.create_context(
 standalone=True,
 # These are OPTIONAL if you want to load a specific version
 libgl='libGL.so.1',
 libx11='libX11.so.6',
)

EGL
import moderngl
ctx = moderngl.create_context(
 standalone=True,
 backend='egl',
 # These are OPTIONAL if you want to load a specific version
 libgl='libGL.so.1',
 libegl='libEGL.so.1',
)

Running an example

Checking that everything works can be done with a basic triangle example.

Install dependencies:

pip3 install moderngl numpy pyrr pillow

The following example renders a triangle and writes
it to a png file so we can verify the contents.

[image: ../_images/output.png]
import moderngl
import numpy as np
from PIL import Image
from pyrr import Matrix44

CREATE CONTEXT HERE

prog = ctx.program(vertex_shader="""
 #version 330
 uniform mat4 model;
 in vec2 in_vert;
 in vec3 in_color;
 out vec3 color;
 void main() {
 gl_Position = model * vec4(in_vert, 0.0, 1.0);
 color = in_color;
 }
 """,
 fragment_shader="""
 #version 330
 in vec3 color;
 out vec4 fragColor;
 void main() {
 fragColor = vec4(color, 1.0);
 }
""")

vertices = np.array([
 -0.6, -0.6,
 1.0, 0.0, 0.0,
 0.6, -0.6,
 0.0, 1.0, 0.0,
 0.0, 0.6,
 0.0, 0.0, 1.0,
], dtype='f4')

vbo = ctx.buffer(vertices)
vao = ctx.simple_vertex_array(prog, vbo, 'in_vert', 'in_color')
fbo = ctx.framebuffer(color_attachments=[ctx.texture((512, 512), 4)])

fbo.use()
ctx.clear()
prog['model'].write(Matrix44.from_eulers((0.0, 0.1, 0.0), dtype='f4'))
vao.render(moderngl.TRIANGLES)

data = fbo.read(components=3)
image = Image.frombytes('RGB', fbo.size, data)
image = image.transpose(Image.FLIP_TOP_BOTTOM)
image.save('output.png')

Reference

	moderngl

	Context

	Buffer

	VertexArray

	Program

	Sampler

	Texture

	TextureArray

	Texture3D

	TextureCube

	Framebuffer

	Renderbuffer

	Scope

	Query

	ConditionalRender

	ComputeShader

moderngl

Attributes

Attributes available in the root moderngl module.
Some may be listed in their original sub-module,
but they are imported during initialization.

Context Flags

Also available in the Context instance
including mode details.

Primitive Modes

Also available in the Context instance
including mode details.

Texture Filters

Also available in the Context instance
including mode details.

Blend Functions

Also available in the Context instance
including mode details.

Shortcuts

Blend Equations

Also available in the Context instance
including mode details.

Provoking Vertex

Also available in the Context instance
including mode details.

Functions

Also see Context.

Context

Create

ModernGL Objects

Methods

Attributes

Context Flags

Context flags are used to enable or disable states in the context.
These are not the same enum values as in opengl, but are rather
bit flags so we can or them together setting multiple states
in a simple way.

These values are available in the Context object and in the
moderngl module when you don’t have access to the context.

import moderngl

From moderngl
ctx.enable_only(moderngl.DEPTH_TEST | moderngl.CULL_FACE)

From context
ctx.enable_only(ctx.DEPTH_TEST | ctx.CULL_FACE)

Primitive Modes

Texture Filters

Also available in the Context instance
including mode details.

Blend Functions

Blend functions are used with Context.blend_func
to control blending operations.

Default value
ctx.blend_func = ctx.SRC_ALPHA, ctx.ONE_MINUS_SRC_ALPHA

Blend Function Shortcuts

Blend Equations

Used with Context.blend_equation.

Other Enums

Examples

ModernGL Context

import moderngl
create a window
ctx = moderngl.create_context()
print(ctx.version_code)

Standalone ModernGL Context

import moderngl
ctx = moderngl.create_standalone_context()
print(ctx.version_code)

ContextManager

context_manager.py

example.py

	1
2
3
4

	from context_manager import ContextManager

ctx = ContextManager.get_default_context()
print(ctx.version_code)

Buffer

Create

Methods

Attributes

VertexArray

Create

Methods

Attributes

Program

Create

Methods

Attributes

Examples

A simple program designed for rendering

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	my_render_program = ctx.program(
 vertex_shader='''
 #version 330

 in vec2 vert;

 void main() {
 gl_Position = vec4(vert, 0.0, 1.0);
 }
 ''',
 fragment_shader='''
 #version 330

 out vec4 color;

 void main() {
 color = vec4(0.3, 0.5, 1.0, 1.0);
 }
 ''',
)

A simple program designed for transforming

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	my_transform_program = ctx.program(
 vertex_shader='''
 #version 330

 in vec4 vert;
 out float vert_length;

 void main() {
 vert_length = length(vert);
 }
 ''',
 varyings=['vert_length']
)

Program Members

	Uniform
	Methods

	Attributes

	UniformBlock

	Subroutine

	Attribute

	Varying

Uniform

Methods

Attributes

UniformBlock

Subroutine

Attribute

Varying

Sampler

Create

Methods

Attributes

Texture

Create

Methods

Attributes

TextureArray

Create

Methods

Attributes

Texture3D

Create

Methods

Attributes

TextureCube

Create

Methods

Attributes

Framebuffer

Create

Methods

Attributes

Renderbuffer

Create

Methods

Attributes

Scope

Create

Methods

Attributes

Examples

Simple scope example

scope1 = ctx.scope(fbo1, moderngl.BLEND)
scope2 = ctx.scope(fbo2, moderngl.DEPTH_TEST | moderngl.CULL_FACE)

with scope1:
 # do some rendering

with scope2:
 # do some rendering

Scope for querying

query = ctx.query(samples=True)
scope = ctx.scope(ctx.screen, moderngl.DEPTH_TEST | moderngl.RASTERIZER_DISCARD)

with scope, query:
 # do some rendering

print(query.samples)

Understanding what scope objects do

scope = ctx.scope(
 framebuffer=framebuffer1,
 enable_only=moderngl.BLEND,
 textures=[
 (texture1, 4),
 (texture2, 3),
],
 uniform_buffers=[
 (buffer1, 6),
 (buffer2, 5),
],
 storage_buffers=[
 (buffer3, 8),
],
)

Let's assume we have some state before entering the scope
some_random_framebuffer.use()
some_random_texture.use(3)
some_random_buffer.bind_to_uniform_block(5)
some_random_buffer.bind_to_storage_buffer(8)
ctx.enable_only(moderngl.DEPTH_TEST)

with scope:
 # on __enter__
 # framebuffer1.use()
 # ctx.enable_only(moderngl.BLEND)
 # texture1.use(4)
 # texture2.use(3)
 # buffer1.bind_to_uniform_block(6)
 # buffer2.bind_to_uniform_block(5)
 # buffer3.bind_to_storage_buffer(8)

 # do some rendering

 # on __exit__
 # some_random_framebuffer.use()
 # ctx.enable_only(moderngl.DEPTH_TEST)

Originally we had the following, let's see what was changed
some_random_framebuffer.use() # This was restored hurray!
some_random_texture.use(3) # Have to restore it manually.
some_random_buffer.bind_to_uniform_block(5) # Have to restore it manually.
some_random_buffer.bind_to_storage_buffer(8) # Have to restore it manually.
ctx.enable_only(moderngl.DEPTH_TEST) # This was restored too.

Scope objects only do as much as necessary.
Restoring the framebuffer and enable flags are lowcost operations and
without them you could get a hard time debugging the application.

Query

Create

Attributes

Examples

Simple query example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	import moderngl
import numpy as np

ctx = moderngl.create_standalone_context()
prog = ctx.program(
 vertex_shader='''
 #version 330

 in vec2 in_vert;

 void main() {
 gl_Position = vec4(in_vert, 0.0, 1.0);
 }
 ''',
 fragment_shader='''
 #version 330

 out vec4 color;

 void main() {
 color = vec4(1.0, 0.0, 0.0, 1.0);
 }
 ''',
)

vertices = np.array([
 0.0, 0.0,
 1.0, 0.0,
 0.0, 1.0,
], dtype='f4')

vbo = ctx.buffer(vertices.tobytes())
vao = ctx.simple_vertex_array(prog, vbo, 'in_vert')

fbo = ctx.simple_framebuffer((64, 64))
fbo.use()

query = ctx.query(samples=True, time=True)

with query:
 vao.render()

print('It took %d nanoseconds' % query.elapsed)
print('to render %d samples' % query.samples)

Output

It took 13529 nanoseconds
to render 496 samples

ConditionalRender

Attributes

Examples

Simple conditional rendering example

query = ctx.query(any_samples=True)

with query:
 vao1.render()

with query.crender:
 print('This will always get printed')
 vao2.render() # But this will be rendered only if vao1 has passing samples.

ComputeShader

Create

Methods

Attributes

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 moderngl	

 	
 	
 moderngl.conditional_renderer	

Index

 M

M

 	
 	
 moderngl

 	module, [1], [2], [3]

 	
 moderngl.conditional_renderer

 	module

 	
 	
 module

 	moderngl, [1], [2], [3]

 	moderngl.conditional_renderer

 _static/plus.png

_static/logo.png

_static/minus.png

_static/relatedlogo.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 ModernGL

 		
 Install

 		
 From PyPI (pip)

 		
 Development environment

 		
 Using with Mesa 3D on Windows

 		
 Using MSYS2

 		
 Using ModernGL in CI

 		
 Windows CI Configuration

 		
 Linux

 		
 macOS

 		
 The Guide

 		
 An introduction to OpenGL

 		
 The simplified story

 		
 Beyond OpenGL

 		
 Where do ModernGL fit into all this?

 		
 Creating a Context

 		
 ModernGL Types

 		
 Shader Introduction

 		
 Vertex Shader (transforms)

 		
 Rendering

 		
 Program

 		
 VertexArray

 		
 Topics

 		
 The Lifecycle of a ModernGL Object

 		
 Releasing Objects

 		
 Detecting Released Objects

 		
 Context Creation

 		
 Introduction

 		
 Require a minimum OpenGL version

 		
 Specifying context backend

 		
 Context Sharing

 		
 Context Info

 		
 Texture Format

 		
 Description

 		
 Float Textures

 		
 Integer Textures

 		
 Normalized Integer Textures

 		
 Overriding internalformat

 		
 Buffer Format

 		
 Description

 		
 Syntax

 		
 Examples

 		
 Techniques

 		
 Headless on Ubuntu 18 Server

 		
 Dependencies

 		
 Creating a context

 		
 Running an example

 		
 Reference

 		
 moderngl

 		
 Attributes

 		
 Functions

 		
 Context

 		
 Create

 		
 ModernGL Objects

 		
 Methods

 		
 Attributes

 		
 Context Flags

 		
 Primitive Modes

 		
 Blend Functions

 		
 Blend Function Shortcuts

 		
 Blend Equations

 		
 Other Enums

 		
 Examples

 		
 Buffer

 		
 Create

 		
 Methods

 		
 Attributes

 		
 VertexArray

 		
 Create

 		
 Methods

 		
 Attributes

 		
 Program

 		
 Create

 		
 Methods

 		
 Attributes

 		
 Examples

 		
 Program Members

 		
 Sampler

 		
 Create

 		
 Methods

 		
 Attributes

 		
 Texture

 		
 Create

 		
 Methods

 		
 Attributes

 		
 TextureArray

 		
 Create

 		
 Methods

 		
 Attributes

 		
 Texture3D

 		
 Create

 		
 Methods

 		
 Attributes

 		
 TextureCube

 		
 Create

 		
 Methods

 		
 Attributes

 		
 Framebuffer

 		
 Create

 		
 Methods

 		
 Attributes

 		
 Renderbuffer

 		
 Create

 		
 Methods

 		
 Attributes

 		
 Scope

 		
 Create

 		
 Methods

 		
 Attributes

 		
 Examples

 		
 Query

 		
 Create

 		
 Attributes

 		
 Examples

 		
 ConditionalRender

 		
 Attributes

 		
 Examples

 		
 ComputeShader

 		
 Create

 		
 Methods

 		
 Attributes

_images/output.png

_images/screen_coordinates.png
(-1.0,1.0)

(0.0,0.0)

X
(1.0,1.0)

(-1.0,-1.0)

(1.0,-1.0)|

